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Bifurcation structures of the classical Morse oscillator with different shapes of periodic forces are
studied numerically in detail. The external periodic forces considered in our study are sine wave, square
wave, symmetric and asymmetric saw tooth waves, rectified sine wave and modulus of sine wave.
Transcritical bifurcation, period doubling bifurcation, chaos, intermittency, periodic windows, reverse
period doubling bifurcation, period-3 bubble orbit are found to occur due to the applied forces.
Numerical results are demonstrated through bifurcation diagram, phase portrait and Poincare map. A
comparative study of various forces is also performed.

1. Introduction

The driven Morse oscillator is a standard model frequently used in
theoretical chemistry for describing many molecular phenomena, such as
interaction of a molecule with electromagnetic radiation [1-5]. In recent
years, many researchers studied the dynamics of Morse oscillator with
classical, semiclassical and quantum mechanical methods [6-12]. In
particular Lie et al. [13] numerically studied the bistable and chaotic
behavior in a damped driven Morse oscillator by solving a classical
equation. Knob et al. [14] investigated the bifurcation structure of the
classical Morse oscillator using bifurcation diagram, fixed-point diagram
and phase portraits. Parthasarathy et al. [15] investigated the analytic
structure of the solution of damped and driven Morse oscillator is carried
out after effecting an exponential transformation. Rong-Wei et al. [16]
studied the dynamics of the driven Morse oscillator qualitatively by
analytic methods. Jing et al. [17] investigated the bifurcations of periodic
orbits and chaos in damped and driven Morse oscillator by both
analytically and numerically. Heagy et al. [18] studied the classical
dynamics of one dimensional Morse oscillator subjected to periodic
impulsive (delta function) force. Behnia et al. [19] have investigated the
controlling chaos in a damped and driven Morse oscillator via slave-
master feedback. Gan et al. [20] analysed the process of torus breakdown
transforming the original system into another one in action-angle
variables. In classical Morse oscillator, Kapral et al. [21] have found period-
doubling, tangent bifurcations, chaos using Poincare maps, bifurcation
diagrams and amplitude resonance curves. Beigie et al. [22] investigated
the chaotic dynamics associated with a quasiperiodically forced Morse
oscillator using Melnikov method. In a very recent paper, Zhou et al. [23]
studied both analytically and numerically the chaotic motion of a damped
and driven Morse oscillator and Abirami et al. [24] investigated the
occurrence of vibrational resonance in classical and quantum mechanical
Morse oscillator driven by biharmonic force.

Motivated by the above, in the present paper, we wish to investigate the
bifurcation structures of the classical Morse oscillator subjected to
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different periodic forces. The equation of motion of damped and driven
classical Morse oscillator equation is

X +dx+ e X A—e ) = F (1), @

where B and a are the dissociation energy and the Morse spectroscopic
term or the range parameter, respectively, d and F(t) are the velocity
proportional damping parameter and the external forcing term
respectively. In the absence of external forcing and damping terms (ie.
F(t)=0 and d=0) the potential of the Morse oscillator is given by [1-3].

V() =iﬁe'”‘(e'“‘ ~2) )

Fig. 1 depicts the form of the Morse potential (solid line) and harmonic
potential (dotted line). The Morse potential realistically leads to
dissociation, making it more useful than the harmonic potential. The
Morse potential is the simplest representative of the potential between
two nuclei in which dissociation is possible. For over the past three
decades, the Morse potential have provided a useful model for the
interatomic potential and for fitting the vibrational spectra of diatomic
molecules [1, 2].
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Fig. 1 Morse potential curve for = 2.0 and a = 1 (solid line). Harmonic potential
curve (dotted curve ).
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At present the Morse oscillator is commonly used for diatomic. The
damped and driven Morse oscillator (Eq. 1) can serve as a rough model for
the following problems [25-29]:

(i) Multiphoton excitation and dissociation of diatomic molecules in a
dense medium or in a gaseous cell under high pressure.

(ii) Pumping of a local mode of a polyatomic molecule by an infrared
laser; where the energy flow out of the molecule (by mode-mode
coupling, collisions etc.) is modeled by a single decay constant.

(iii) The anamolous gains observed in stimulated Raman emission and

(iv) The dissociation of vander waal complexes.

2. Types of Periodic Forces

The external periodic forces of our interest are (i) sine wave, (ii) square
wave, (iii) symmetric saw tooth wave, (iv) asymmetric saw tooth wave, (v)
rectified sine wave and (vi) modulus of sine wave. The period-T of all the
forces considered in our study is fixed as 2m/c0. Mathematical forms of
periodic force are the following.

F,.(0)=F,, (t+27/0) = fshat, ©)
Fyo (1) = Fy (t+ 27/ @) = fsgn(sin ot), (4)
fsinwt, 0<t
Foll) = Fo(t20fa) = | b Ot <l
0, r/o<t<2r/w,
4T, O<t<r/w
(t+27/w)=1-4ft/T+2f, 7/2w<t<37/20 (6)
4t/T -4f, 3n/20<t<2r/0,

Fsst(t) = F

sst

~ ~ 2ft/T, O<t<z/w
Fall) = Fas(t+ 2/ = {z ft/T-2f, zjo<t<2rlo, 2
Frai(t) = Fog(t+27/0) = flsin ot /2] ®)

Where sqn(y) is signy, T = 2m/© and is taken as mod (7). When the system
(Eq.1) is subjected to external periodic force, the potential has an
additional term - x F(t).

3. Analysis of Bifurcation Structures due to the Applied Periodic
Forces

For our numerical calculation we transform the second order
differential equation (Eq. 1) into an autonomous system of first order
differential equation of the following form

X=Y, (%9a)
y=-dy-pge"(1-e")+F(Q). (9b)

For our numerical study we fixd=0.8,§=8.0,a=1and w = 2. Eq. 9 is
solved with different periodic forces by Runge-Kutta fourth order method
with time step size 2m/c/200. Numerical solution corresponding to 500
drive cycle is left as transient. We analyzed the response of the system (Eq.
9) by varying the forcing amplitude of each periodic forces.

3.1 Transcritical Bifurcation

Fig. 2 shows the bifurcation structures for various forces. We can clearly
notice many similarities and differences in the bifurcation pattern when
the control parameter fis varied. Consider the effect of the force fsinwt at
f sin = fsine =1.60794 , a transcritrical bifurcation occurs at which the
maximal Lyapunov exponent (Am) = 0. When the force fsinwt is replaced by
other forces similar behavior is found. The values of forcing amplitude of
different forces at which transcritical bifurcation observed are fi: =
1.30984, frect = 1.62150, fsse = 1.99083, faser = 2.92987 and fimsir = 1.20529.
That is the bifurcation occurs relatively earlier in the case of modulus of
sine wave force whereas it is very much delayed in asymmetric saw tooth
wave force. Fig. 3 shows the phase portraits for few values of ffor various
forces. For small values of f of certain forces the orbits have cusp-like
structure due to the discontinuity in the applied forces.

3.2 Period Doubling and Chaos

When the value of the forcing amplitude is increased from transcritical
bifurcation a period doubling phenomenon leading to chaotic motion is
realized for all the forms of forces. This is shown in Fig. 2. In Fig. 2a with
the force being f sin wt at fin = 2.13431 the period-T orbit becomes
unstable and a period-2T orbit is born. Bifurcation to period 4T, 8T and

16T orbits are found to occur at fin = 2.37859, 2.4401 and 2.4511
respectively. The period doubling sequence accumulated at fsin = 2.4556.
At this value of fsin onset of chaos is observed. When the external force is
square wave, the period 2T, 4T, 8T and 16T orbit bifurcations occurred at
fsq=1.6665,1.71744,1.72648 and 1.72875 respectively. The critical values
of f at which various bifurcations occur for different forms of forces are
summarized in Table 1. From the Table 1 and the Fig. 2, we note that when
fis increased from a small value, period doubling phenomenon is realized
much earlier for square wave, while it is relatively at a higher value of ffor
the asymmetric saw-tooth wave. For all the forces we studied the
behaviour in the interval f € [0,10] As the value of forcing amplitude is
increased beyond the onset of chaos, bifurcations of chaos such as band
merging and sudden widening of a chaotic attractor, intermittency,
period-3 bubble orbit and reverse period doubling bifurcation are
observed for all the forces. However the bifurcations occurred at different
values of forcing amplitude. Chaotic regions of interval of f are small for
the modulus of sine wave. This is clearly evident in Fig. 2. Fig. 4 shows
phase portraits at the accumulation of period doubling phenomenon
(onset of chaos) for various forces. The geometrical structure of the
attractor is different for various forces. Cross-well chaotic motion is
formed for all the forces except for modulus of sine wave force. Period-3
bubble orbit occurs for all the forces except square wave and modulus of
sine wave forces which are clearly shown in Fig. 5. For modulus of sine
wave force, the system (Eq. 9) starts with period doubling followed by
chaotic motion and reverse-period doubling bifurcation. This is clearly
evident in Fig. 2. The Poincare map of the chaotic attractor of the system
(Eq. 9) for various forces is shown in Fig. 6. It has been drawn using points
collected at 2m/0 time intervals, that is, at every period of the external
periodic force of the system (Eq. 9). The geometrical structure of the
chaotic attractor in the Poincare map appears as a totally disconnected at
uncountable set of points.
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Fig. 2 Bifurcation structures of classical Morse oscillator (Eq.9) driven by different
periodic forces. The values of other parameters are d = 0.8, 3 =8.0,a=1and w = 2.

3 3
sine wave (a) square wave (p)| 3 Symmetric saw-

= bosee O
y O 01 O\I ™
\ y
.\\_/ /

y 0 o )
-3 -3
-0500 05 1.0 1.5 0500051015

N
X

X X
3/asymmetric saw- 3/ recfified sine e) modulus of sme(f

o

3

-0500051015

tooth wave (d) wave 1{wave

s T
y ofl & 0 © ) Yy o G\.
N/ \_ S

-

-3
2 -0500051015 0002040608

X X X
Fig. 3 Phase portraits of the system (Eq.9) near transcritical bifurcation for various
forces. The values of other parameters are d= 0.8, =8.0, a=1and w = 2.

3.3 Intermittency Transitions

Next we show the occurrence of intermittency transition to chaos in the
system (Eq. 1) driven by periodic sine wave force. In between the onset of
chaos and band merging crisis a periodic window region occurs. Fig. 7
shows the plot of x, versus n where n is the time t in steps of 2m/o for three
values of f. Intermittent dynamics is clearly seen in Figs. 7(a) and 7(b).
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Table 1 Summary of bifurcation phenomena of the classical Morse oscillator (Eq. 9)
in the presence of different shape of periodic forces ford=0.8, 3=8.0,a =1 and w
=2.0.

Critical values of amplitude of the various forces
Rectified Symmetric Asymmetric Modulus

Bifurcations  Sine eI sine saw-tooth saw-tooth  ofsine
wave Wave
wave wave wave wave

Transcritical 1.60794 1.31984 1.62150 1.99083 2.92987 1.20529
Period-2T 2.13431 1.66650 2.13161 2.72833 4.54104 2.38566
Period-4T 2.37859 1.71744 2.37279 3.02356 5.09425 2.50147
Period-8T 2.44005 1.77265 2.43652 3.08795 5.23061 2.50563
Period-16T 245117 1.72875 2.45601 3.12257 526118 2.50893
Onset of 2.45558 1.73151 2.45920 3.13335 5.28020 2.50922
chaos

Intermittency 2.57625 1.81901 2.51847 3.27167 5.35725 2.51068
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Fig. 4 Phase portraits of the system (Eq. 9) at the accumulation of period doubling
phenomenon (onset of chaos) for various forces. The values of other parameters are
d=08,=80,a=1and w=2.
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Fig. 5 Bifurcation structures of the sysyem (Eq. 9) for showing the period-3 bubble

orbit . The values of other parameters ared = 0.8, 3=8.0,a=1and w = 2.
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Fig. 6 The Poincare maps of the chaotic attractor of the system (Eq. 9) for various
forces. The values of other parameters are d =0.8, § =8.0,a=1and w = 2.
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Fig. 7 xn versus n of the system (Eq. 9) driven by periodic sine wave force ( where n
is the time t in steps of 2m/w ) for three values of f. Intermittent dynamics is clearly
seen in figs.7(a) and 7(b).

In these figures, the laminar region with the unstable period-5T orbit
interrupted by chaotic burst is observed. This type of behaviour is
observed for other forces in system (Eq. 9). However the period of the
laminar region is found to be different for other forces. For force such as
square wave, symmetric saw tooth wave, rectified sine wave the period of
the orbit in the laminar region is 5T while for the forces namely
asymmetric saw tooth wave and modulus of sine wave the period is 6T.

3.4 Bifurcation Patterns for w = 0.5

So far we studied the response of the system with w = 2.0, the dynamics
of the system (Eq. 9) is analysed for several values of w. As an example,
Fig. 8 presents the result for w = 0.5.

t

Fig. 8 Bifurcation structures for the system (Eq. 9) driven by various forces (a) sine
wave (b) square wave (c) symmetric saw-tooth wave (d) asymmetric saw-tooth wave
(e) rectified sine wave and (f) modulus of sine wave. The other parameters values are
d=08,=8.0,a=1and w=0.5.

Here again we can clearly notice many similarities and differences in
the bifurcation phenomenon when the parameter fis varied. For sine wave
force at f =1.51282 period-2 bifurcation occurs at which maximal
Lyapunov exponent Am = 0. When the sine wave force is replaced by other
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forces similar behaviour is found except modulus of sine wave force. Only
period-T orbit is observed in this force. Period-2 bifurcation observed are
fsq =1.24823, fist = 1.89512, fase= 2.58175 and fisw= 1.50383. That is this
bifurcation occurs relatively earlier in the case of square wave whereas it
is very much delayed by the asymmetric saw tooth wave force. The period
doubling sequence accumulated at f= 2.75621 for sine wave force. At this
value of f onset of chaos is observed. For other forces fiq = 2.0542, fsst =
3.25621, fast= 5.27452 and fsi= 2.52932. Chaotic motion is not observed in
modulus of sine wave force. (Fig. 8f). For w = 0.5, period-3 bubble orbit is
not observed in system (Eq. 9) for all the forces but it is observed for w =
2.0 in all forces except square wave and modulus of sine wave force. The
bifurcation structures for the system (Eq. 9) driven by periodic sine wave
force in (w, x) plane for four values of f namely, f = 1.0, 2.5, 3.5, 5.0 are
plotted in Fig. 9. The effect of f can be clearly seen in the bifurcation
diagrams Figs. 9(a-d). For f= 1.0, the system (Eq. 9) driven by fsinwt shows
completely periodic behaviour (Fig. 9a). When f is increased from the
value 1, the system (Eq. 9) undergoes reverse period-doubling bifurcation,
periodic windows, chaos etc. which is presented in Fig. 9(b-d). When the
force fsinwt is replaced by other forces similar behaviour is found to occur.
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Fig. 9 Bifurcation structures for the system (Eq. 9) driven by periodic sine wave force
in (w, x) plane for four values of f. The other parameters are d = 0.8, « = 1.0 and § =
8.0.

4. Conclusion

In this paper, we numerically studied the bifurcation structures of
classical Morse oscillator driven by various periodic forces. The various
bifurcation diagrams clearly show that the system (Eq. 1) exhibits
qualitative changes at the critical values of the control parameters as they
are varied smoothly. For a particular set of parameter values we have
shown the occurrence of various bifurcations of chaos, routes to chaos,
period-3 bubble orbit, reverse-period doubling bifurcation and noticed
many similarities and differences in the bifurcation structures in the
presence of various periodic forces. We compared the effect of forces on
transcritical bifurcation, period doubling phenomenon, onset of chaos etc.
for a particular set of the parameters. It is important to study the effect of
other types of forces such as amplitude modulated wave and frequency
modulated wave. Melnikov analytical technique can be employed to Eq. 1
to investigate onset of horseshoe chaos.
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