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Bifurcation structures of the classical Morse oscillator with different shapes of periodic forces are 
studied numerically in detail. The external periodic forces considered in our study are sine wave, square 
wave, symmetric and asymmetric saw tooth waves, rectified sine wave and modulus of sine wave. 
Transcritical bifurcation, period doubling bifurcation, chaos, intermittency, periodic windows, reverse 
period doubling bifurcation, period-3 bubble orbit are found to occur due to the applied forces. 
Numerical results are demonstrated through bifurcation diagram, phase portrait and Poincare map. A 
comparative study of various forces is also performed. 
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1. Introduction 

The driven Morse oscillator is a standard model frequently used in 
theoretical chemistry for describing many molecular phenomena, such as 
interaction of a molecule with electromagnetic radiation [1-5]. In recent 
years, many researchers studied the dynamics of Morse oscillator with 
classical, semiclassical and quantum mechanical methods [6-12]. In 
particular Lie et al. [13] numerically studied the bistable and chaotic 
behavior in a damped driven Morse oscillator by solving a classical 
equation. Knob et al. [14] investigated the bifurcation structure of the 
classical Morse oscillator using bifurcation diagram, fixed-point diagram 
and phase portraits. Parthasarathy et al. [15] investigated the analytic 
structure of the solution of damped and driven Morse oscillator is carried 
out after effecting an exponential transformation. Rong-Wei et al. [16] 
studied the dynamics of the driven Morse oscillator qualitatively by 
analytic methods. Jing et al. [17] investigated the bifurcations of periodic 
orbits and chaos in damped and driven Morse oscillator by both 
analytically and numerically. Heagy et al. [18] studied the classical 
dynamics of one dimensional Morse oscillator subjected to periodic 
impulsive (delta function) force. Behnia et al. [19] have investigated the 
controlling chaos in a damped and driven Morse oscillator via slave-
master feedback. Gan et al. [20] analysed the process of torus breakdown 
transforming the original system into another one in action-angle 
variables. In classical Morse oscillator, Kapral et al. [21] have found period-
doubling, tangent bifurcations, chaos using Poincare maps, bifurcation 
diagrams and amplitude resonance curves. Beigie et al. [22] investigated 
the chaotic dynamics associated with a quasiperiodically forced Morse 
oscillator using Melnikov method. In a very recent paper, Zhou et al. [23] 
studied both analytically and numerically the chaotic motion of a damped 
and driven Morse oscillator and Abirami et al. [24] investigated the 
occurrence of vibrational resonance in classical and quantum mechanical 
Morse oscillator driven by biharmonic force. 

Motivated by the above, in the present paper, we wish to investigate the 
bifurcation structures of the classical Morse oscillator subjected to 

different periodic forces. The equation of motion of damped and driven 
classical Morse oscillator equation is 
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where β and α are the dissociation energy and the Morse spectroscopic 
term or the range parameter, respectively, d and F(t) are the velocity 
proportional damping parameter and the external forcing term 
respectively. In the absence of external forcing and damping terms (ie. 
F(t)=0 and d=0) the potential of the Morse oscillator is given by [1-3]. 
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Fig. 1 depicts the form of the Morse potential (solid line) and harmonic 
potential (dotted line). The Morse potential realistically leads to 
dissociation, making it more useful than the harmonic potential. The 
Morse potential is the simplest representative of the potential between 
two nuclei in which dissociation is possible. For over the past three 
decades, the Morse potential have provided a useful model for the 
interatomic potential and for fitting the vibrational spectra of diatomic 
molecules [1, 2]. 

 

 
Fig. 1 Morse potential curve for β = 2.0 and α = 1 (solid line). Harmonic potential 
curve (dotted curve ). 
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At present the Morse oscillator is commonly used for diatomic. The 
damped and driven Morse oscillator (Eq. 1) can serve as a rough model for 
the following problems [25-29]: 
(i) Multiphoton excitation and dissociation of diatomic molecules in a 

dense medium or in a gaseous cell under high pressure.  
(ii) Pumping of a local mode of a polyatomic molecule by an infrared 

laser; where the energy flow out of the molecule (by mode-mode 
coupling, collisions etc.) is modeled by a single decay constant.  

(iii) The anamolous gains observed in stimulated Raman emission and 
(iv) The dissociation of vander waal complexes. 

 
 
2. Types of Periodic Forces 

The external periodic forces of our interest are (i) sine wave, (ii) square 
wave, (iii) symmetric saw tooth wave, (iv) asymmetric saw tooth wave, (v) 
rectified sine wave and (vi) modulus of sine wave. The period-T of all the 
forces considered in our study is fixed as 2π/ꙍ. Mathematical forms of 
periodic force are the following. 
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Where sqn(y) is sign y, T = 2π/ꙍ and is taken as mod(T). When the system 
(Eq.1) is subjected to external periodic force, the potential has an 
additional term – x F(t). 
 
 
3. Analysis of Bifurcation Structures due to the Applied Periodic 
Forces 

 
For our numerical calculation we transform the second order 

differential equation (Eq. 1) into an autonomous system of first order 
differential equation of the following form 
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For our numerical study we fix d = 0.8, β = 8.0, α = 1 and ω = 2. Eq. 9 is 
solved with different periodic forces by Runge-Kutta fourth order method 
with time step size 2π/ꙍ/200. Numerical solution corresponding to 500 
drive cycle is left as transient. We analyzed the response of the system (Eq. 
9) by varying the forcing amplitude of each periodic forces. 
 
3.1 Transcritical Bifurcation 

Fig. 2 shows the bifurcation structures for various forces. We can clearly 
notice many similarities and differences in the bifurcation pattern when 
the control parameter f is varied. Consider the effect of the force fsinωt at 
f sin = fsin,t =1.60794 , a transcritrical bifurcation occurs at which the 
maximal Lyapunov exponent (λm) ≈ 0. When the force fsinωt is replaced by 
other forces similar behavior is found. The values of forcing amplitude of 
different forces at which transcritical bifurcation observed are fsq,t = 
1.30984, frec,t = 1.62150, fss,t = 1.99083, fast,t = 2.92987 and fmsi,t = 1.20529. 
That is the bifurcation occurs relatively earlier in the case of modulus of 
sine wave force whereas it is very much delayed in asymmetric saw tooth 
wave force. Fig. 3 shows the phase portraits for few values of f for various 
forces. For small values of f of certain forces the orbits have cusp-like 
structure due to the discontinuity in the applied forces. 
 
3.2 Period Doubling and Chaos 

When the value of the forcing amplitude is increased from transcritical 
bifurcation a period doubling phenomenon leading to chaotic motion is 
realized for all the forms of forces. This is shown in Fig. 2. In Fig. 2a with 
the force being f sin ωt at fsin = 2.13431 the period-T orbit becomes 
unstable and a period-2T orbit is born. Bifurcation to period 4T, 8T and 

16T orbits are found to occur at fsin = 2.37859, 2.4401 and 2.4511 
respectively. The period doubling sequence accumulated at fsin = 2.4556. 
At this value of fsin onset of chaos is observed. When the external force is 
square wave, the period 2T, 4T, 8T and 16T orbit bifurcations occurred at 
fsq =1.6665, 1.71744, 1.72648 and 1.72875 respectively. The critical values 
of f at which various bifurcations occur for different forms of forces are 
summarized in Table 1. From the Table 1 and the Fig. 2, we note that when 
f is increased from a small value, period doubling phenomenon is realized 
much earlier for square wave, while it is relatively at a higher value of f for 
the asymmetric saw-tooth wave. For all the forces we studied the 
behaviour in the interval f ∈ [0,10] As the value of forcing amplitude is 
increased beyond the onset of chaos, bifurcations of chaos such as band 
merging and sudden widening of a chaotic attractor, intermittency, 
period-3 bubble orbit and reverse period doubling bifurcation are 
observed for all the forces. However the bifurcations occurred at different 
values of forcing amplitude. Chaotic regions of interval of f are small for 
the modulus of sine wave. This is clearly evident in Fig. 2. Fig. 4 shows 
phase portraits at the accumulation of period doubling phenomenon 
(onset of chaos) for various forces. The geometrical structure of the 
attractor is different for various forces. Cross-well chaotic motion is 
formed for all the forces except for modulus of sine wave force. Period-3 
bubble orbit occurs for all the forces except square wave and modulus of 
sine wave forces which are clearly shown in Fig. 5. For modulus of sine 
wave force, the system (Eq. 9) starts with period doubling followed by 
chaotic motion and reverse-period doubling bifurcation. This is clearly 
evident in Fig. 2. The Poincare map of the chaotic attractor of the system 
(Eq. 9) for various forces is shown in Fig. 6. It has been drawn using points 
collected at 2π/ꙍ time intervals, that is, at every period of the external 
periodic force of the system (Eq. 9). The geometrical structure of the 
chaotic attractor in the Poincare map appears as a totally disconnected at 
uncountable set of points. 

 
Fig. 2 Bifurcation structures of classical Morse oscillator (Eq.9) driven by different 
periodic forces. The values of other parameters are d = 0.8, β = 8.0, α = 1 and ω = 2. 

 

 
Fig. 3 Phase portraits of the system (Eq.9) near transcritical bifurcation for various 
forces. The values of other parameters are d = 0.8, β = 8.0 , α =1 and ω = 2. 

 
3.3 Intermittency Transitions 

Next we show the occurrence of intermittency transition to chaos in the 
system (Eq. 1) driven by periodic sine wave force. In between the onset of 
chaos and band merging crisis a periodic window region occurs. Fig. 7 
shows the plot of xn versus n where n is the time t in steps of 2π/ꙍ

 
for three 

values of f. Intermittent dynamics is clearly seen in Figs. 7(a) and 7(b).  
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Table 1 Summary of bifurcation phenomena of the classical Morse oscillator (Eq. 9) 
in the presence of different shape of periodic forces for d = 0.8, β = 8.0 , α = 1 and ω 
= 2.0. 
 

Bifurcations 

Critical values of amplitude of the various forces 

Sine 
wave 

Square 
Wave 

Rectified 
sine 
wave 

Symmetric 
saw-tooth 
wave 

Asymmetric 
saw-tooth 
wave 

Modulus 
of sine 
wave 

Transcritical 1.60794 1.31984 1.62150 1.99083 2.92987 1.20529 

Period-2T 2.13431 1.66650 2.13161 2.72833 4.54104 2.38566 

Period-4T 2.37859 1.71744 2.37279 3.02356 5.09425 2.50147 

Period-8T 2.44005 1.77265 2.43652 3.08795 5.23061 2.50563 

Period-16T 2.45117 1.72875 2.45601 3.12257 5.26118 2.50893 

Onset of 

chaos 

2.45558 1.73151 2.45920 3.13335 5.28020 2.50922 

Intermittency 2.57625 1.81901 2.51847 3.27167 5.35725 2.51068 

 

 
Fig. 4 Phase portraits of the system (Eq. 9) at the accumulation of period doubling  
phenomenon (onset of chaos) for various forces. The values of other parameters are 
d = 0.8, β = 8.0, α = 1 and ω = 2. 

 

 
Fig. 5 Bifurcation structures of the sysyem (Eq. 9) for showing the period-3 bubble 
orbit . The values of other parameters are d = 0.8, β = 8.0, α = 1 and ω = 2. 

 

 
Fig. 6 The Poincare maps of the chaotic attractor of the system (Eq. 9) for various 
forces. The values of other parameters are d = 0.8, β = 8.0, α = 1 and ω = 2. 

 

 

Fig. 7 xn versus n of the system (Eq. 9) driven by periodic sine wave force ( where n 
is the time t in steps of 2π/ω ) for three values of f. Intermittent dynamics is clearly 
seen in figs.7(a) and 7(b). 

 
 
In these figures, the laminar region with the unstable period-5T orbit 

interrupted by chaotic burst is observed. This type of behaviour is 
observed for other forces in system (Eq. 9). However the period of the 
laminar region is found to be different for other forces. For force such as 
square wave, symmetric saw tooth wave, rectified sine wave the period of 
the orbit in the laminar region is 5T while for the forces namely 
asymmetric saw tooth wave and modulus of sine wave the period is 6T. 

 
3.4 Bifurcation Patterns for ω = 0.5 

So far we studied the response of the system with ω = 2.0, the dynamics 
of the system (Eq. 9) is analysed for several values of ω. As an example, 
Fig. 8 presents the result for ω = 0.5. 

 

 

Fig. 8 Bifurcation structures for the system (Eq. 9) driven by various forces (a) sine 
wave (b) square wave (c) symmetric saw-tooth wave (d) asymmetric saw-tooth wave 
(e) rectified sine wave and (f) modulus of sine wave. The other parameters values are 
d = 0.8, β = 8.0 , α = 1 and ω = 0.5. 

 
Here again we can clearly notice many similarities and differences in 

the bifurcation phenomenon when the parameter f is varied. For sine wave 
force at f =1.51282 period-2 bifurcation occurs at which maximal 
Lyapunov exponent λm ≈ 0. When the sine wave force is replaced by other 
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forces similar behaviour is found except modulus of sine wave force. Only 
period-T orbit is observed in this force. Period-2 bifurcation observed are 
fsq =1.24823, fsst = 1.89512, f ast = 2.58175 and frsw = 1.50383. That is this 
bifurcation occurs relatively earlier in the case of square wave whereas it 
is very much delayed by the asymmetric saw tooth wave force. The period 
doubling sequence accumulated at f = 2.75621 for sine wave force. At this 
value of f onset of chaos is observed. For other forces fsq = 2.0542, fsst = 
3.25621, fast = 5.27452 and frsi = 2.52932. Chaotic motion is not observed in 
modulus of sine wave force. (Fig. 8f). For ω = 0.5, period-3 bubble orbit is 
not observed in system (Eq. 9) for all the forces but it is observed for ω = 
2.0 in all forces except square wave and modulus of sine wave force. The 
bifurcation structures for the system (Eq. 9) driven by periodic sine wave 
force in (ω, x)

 
plane for four values of f namely, f = 1.0, 2.5, 3.5, 5.0 are 

plotted in Fig. 9. The effect of f can be clearly seen in the bifurcation 
diagrams Figs. 9(a-d). For f = 1.0, the system (Eq. 9) driven by fsinωt shows 
completely periodic behaviour (Fig. 9a). When f is increased from the 
value 1, the system (Eq. 9) undergoes reverse period-doubling bifurcation, 
periodic windows, chaos etc. which is presented in Fig. 9(b-d). When the 
force fsinωt is replaced by other forces similar behaviour is found to occur. 

 

Fig. 9 Bifurcation structures for the system (Eq. 9) driven by periodic sine wave force 
in (ω, x) plane for four values of f. The other parameters are d = 0.8, α = 1.0 and β = 
8.0. 

 

4. Conclusion 

In this paper, we numerically studied the bifurcation structures of 
classical Morse oscillator driven by various periodic forces. The various 
bifurcation diagrams clearly show that the system (Eq. 1) exhibits 
qualitative changes at the critical values of the control parameters as they 
are varied smoothly. For a particular set of parameter values we have 
shown the occurrence of various bifurcations of chaos, routes to chaos, 
period-3 bubble orbit, reverse-period doubling bifurcation and noticed 
many similarities and differences in the bifurcation structures in the 
presence of various periodic forces. We compared the effect of forces on 
transcritical bifurcation, period doubling phenomenon, onset of chaos etc. 
for a particular set of the parameters. It is important to study the effect of 
other types of forces such as amplitude modulated wave and frequency 
modulated wave. Melnikov analytical technique can be employed to Eq. 1 
to investigate onset of horseshoe chaos.  
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